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Calculation of TM,, Dispersion Relations in
a Corrugated Cylindrical Waveguide

ALAN BROMBORSKY, MEMBER, IEEE, AND BRIAN RUTH

Abstract —The TM y,,-mode Maxwell equations in a cylindrical geome-
try are converted to a state-vector system of coupled linear differential
equations, in which the boundary conditions for a waveguide of varying

. diameter are included in the coefficient matrix of the state-vector system.
The particular problem of periodic boundary conditions is solved for a
waveguide with a sinusoidally undulating wall.

I. INTRODUCTION

HE GENERATION of ultra-high-power (~1 GW)
microwave pulses, via the driving of slow-wave struc-
tures by intense, pulsed, relativistic electron beams (0.5 to
2.0 MeV, 2 to 15 kA, 15 to 100 ns) [1], [2], places unique
demands upon the slow-wave structure in terms of the RF
power densities (0.3 GW/cm?) and electric fields (400
kV/cm) present in the structure. Conventional slow-wave
structures, such as the helix- and iris-loaded waveguides,
are susceptible to high-field breakdown, and hence plasma
formation, with the subsequent shorting out of the slow-
wave structure. What is required for ultra-high-power de-
vices is a structure with a periodic wall shape that does not
lead to undue electric-field intensification. A possible
candidate is a cylindrical guide in which the waveguide
diameter varies sinusoidally with axial position.
However, in order to design a device utilizing such a
structure, the cold waveguide dispersion relation and the
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electromagnetic field distribution must be accurately de-
termined.

The basic objective of this paper is to describe a tech-
nique for computing the dispersion relation and electro-
magnetic fields of the TM;, modes of a periodically rip-
pled cylindrical waveguide. Please note that the technique
to be described also can be applied to other than TM,,
modes, so that with minor changes the derivation could be
quite useful in calculating TE modes in tapered gyrotron
cavities. Also note that the source terms in the Maxwell
equations are not initially set to zero. This is done so that
eventually the field calculation described can be used to
compute the coupling impedance between an electron beam
and a propagating waveguide mode.

II. SCALING OF MAXWELL EQUATIONS

A. Notation
We define (in MKS units)
c free-space speed of light,
€ permittivity of free space,
Po permeability of free space,
Mo free-space wave impedance (377 Q),
® wave circular frequency,
r, 0,z cylindrical coordinates,
E. E, E, electric-field components,
H,, Hy, E, magnetic-field components,
g Jgs J, current-density components,
L periodicity length of slow-wave structure,

0018-9480,/84,/0600-0600$01.00 ©1984 IEEE
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Jo scaling current density,
o conductivity of waveguide wall,
R(z) radius of slow-wave structure as a function

of axial position,

i square root of minus one,

Yy differentiation operator,

Of transpose operator,

O)* conjugation operator,

OF hermitian conjugation operator.

B. Transformation of Equations

The oscillatory Maxwell equations, with an assumed
time dependence of e’“’, for the azimiuthally symmetric
TM modes (Eqy, H,, H,, and J; all zero) are

38,

‘5‘Z—=iw€0Er+ J, (la)
10 .
7E(rH0)=lw€0Ez+Jz (lb)
JE, JE, )
5 "y = ieroHp. (1c)

For computational purposes, and in order to understand
how the dispersion relatioris scale with system dimensions,
the Maxwell equations should be rewritten in terms of
dimensionless variables. Introducing the variables

Q=wL/c (2a)
§=z/L (2b)
p=r/L (2¢)
S, = J,/Jy (2d)
S, =J./J, (2¢)
Fy=Hy /(L) (21)
G, =iQE, /(noLJy) (28)
G, =iQE, /(noLJ,) (2h)

and substituting them into the first equation set (1) trans-
forms the Maxwell equations into

a5

a¢ = _(Gr+Sr) (33)
1 4
ﬁgﬁ(HFo)=Gz+Sz (3b)
3G, 4G,
'—&—* a“ =92F0. (30)

Note that, in addition to making the Maxwell equations
dimensionless, the change of variables has eliminated the
frequency coefficients from all equations except (3c). The
frequency coefficient Q% in (3¢) is now real if @ is real.

1L

If the waveguide is a perfect conductor, the boundary
condition to be enforced is zero tangential electric field on
the boundary, E,(R(z), z) = 0. If the waveguide wall is not
a perfect conductor, the tangential electric field is related

WAVEGUIDE BOUNDARY CONDITIONS
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to the azimuthal magnetic field by
E(R(z),z)=—Z,Hy(R(z),z) (4)

where the surface impedance of the waveguide wall Z,, is

(3] .
Z, = (1+i){(m,)/(20L) . (5)

In order to express (4) in terms of the same dimensionless
variables as the system (3), define a dimensionless wave-
guide radius by

a(§)=R(L§)/L (6)
and substitute (2f), (2g), and (2h) into (4) io obtain
G,(a(£),8) = —[i(1+ )92/ 2oL, | K (a($), £).
(7)
Defining
1,(Q) = —i(1+1)Q*%/\20Ln, (8)

and expressing G,(a(§),£&) in terms of its cotnponents
produces a boundary equation of the form

(G.(a(), &)+ w'(£)G.(a(£),£)) N1+ '(§)
=1,(R)F(a(£),£) (9)

which allows one to express G, on the wall in terms of G,
and F,

G.(a(8). &) =1+ a(£) 1, (R) E(al£), £)
— &(£)G,(a(£),£). (10)

In addition to the boundary conditions at the waveguide
wall, the cylindrical symmetry of the systein requires that,

on the waveguide axis (p=0), Fy, G,, and S, be zero for
all &

IV. TRANSFORMATION OF MAXWELL EQUATIONS TO
STATE VECTOR EQUATIONS

A. Notation
Denote a general state vector 7(%) by

P(£)=[Vo(&), - V(O] (11)
and define a basis set vector by
$(v)= [¢0(V)>"‘9¢N+1(V)]T (12)

where the ¢;(») form a complete set of at least once-dif-
ferentiable basis functions on the interval (0,1) as N — o0,
and let $(0)==0. For the variable-diameter cylindrical
waveguide, let

v(p,§) =n/a(f) (13)

so that the waveguide radius for any given ¢ is equivalent
torv=1

B. Field Expansions

Except for G, (u, §), which would be redundant, expand
all field and source components in terms of the basis set
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vector and a state vector

Fy(p, &)= 6(v(n,£) " F(8) (14)
G (1. £)=3(r(n,£)G(£) (15)
S (1, 8) =¢(r(1,£)787(¢) (16)
S, (1, 8) = $(v(, £))SH&)/v(n, 8). (17

Because ¢(0) =0, the boundary conditions on F, G,, and
S, are satisfied at p = 0. However, so that S, can take on
nonzero values at p=0, the expansmn for S, A7) is
modified by the factor 1/». Then, if $(») is restrlcted to go
to zero linearly as » approaches 0, S,(0,&) can take on
finite nonzero values. The field expansion for G,(u, §) is
obtained by substituting (14) and (17) into (3b)

G.(k, €)= (F()+3(v)/7) "F(§)/a(8)
—4(»)"S% () /7.
C. State Vector Form of Curl H Equation (3a)
Substituting (14), (15), and (16) into (3a) yields

(18)

ag‘“ v) F+o(v) ———<i>( )'(G+57). (19)

Simplifying dv /3¢ by noting

E” 7 ald) ) @ (20

and substituting (20) into (19), we obtain
2 1Tdﬁ ’ —", = - — —.r
$0) =0 F-30)(G+5). (1)

Multiply (21) from the left by w(v)$(v) where w(») is an
arbitrary weight function. Then integrate the resulting
equation from 0 to 1 with respect to », giving

“(8) 45
A - = BF - A(G+S" 22
where 4 and B are dyadic matrices defined by
1 - N~
a=[(drw(n)$(2)é(r)" (23)
B=[ldvw(n)rg(») ()", (24)
0
D. State Vector Form of Curl E Equation (3c)
Substitute (14) and (15) into (3¢)
a / - — — —
50) 48 00 & 0) TG4 2% () F. (25)

Multiply (25) from the left by w(»)é(») and integrate from
0 to 1 with respect to », giving

L ¥ 2
o) — =BG + QF.

Now reduce the first term of the right-hand side (r.h.s.) of

A— —/ dvw(» )qs(v) (26)
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(26) via integration by parts

folde(v)g(v) 33(;2 = —(1?
{[W(p)¢(v)a fdv w(r)é(»))G }

(27)

Evaluate the first term in the r.h.s. of (27) by using the
boundary condition (10) for which the expansions (14) and
(15) for Fy(a(£), &) and G,.(a(£), §) have been substituted
into it

Lwmdmal;
\/1+(a )

7, ()w(1)$(1)$(1) F(£)

- %w(l>$<1>$(1)Té(s>. (28)

Evaluate the second term in the r.h.s. of (27) by substitut-
ing (18)

%j;)ldp (w(»)$(»))'G. = ;12—((3 +D)F(§)- %Dgz(é)

(29)

where C and D are the dyadic matrices
C=j(; dv(w(v)¢(v))'$’(v) (30)
D= [lar (w7 /. (1)

0

Now substitute (28) and (29) into (26) via (27) to obtain
the Curl E state vector equation

A% (5L )s50)7)6

a(§)
[ e BnEnT
a(g)
}ﬁ

(g)DSz(ﬁ) (32)

E. Total State Vector Equations

Define

0(8)" = (F(67.6(8)") (33)
S =(5"®)".5(&)") (34)
1=[6‘ 2] (35)
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’
o
—B
a

M(e)-
Y @z +ou- €22

-4 0
MO-=[ T ] (37)
so that the state vector equation can be written
d
Q = M(£)D + N()S. (38)

V. SOLUTION OF STATE VECTOR EQUATIONS FOR
Periopic BOUNDARY CONDITION

A. Floguet Solution

If R(z) is periodic with period L then «(§) is periodic
with period 1 and likewise o’/a, y1+(a’)*/a, and 1/a>
are also periodic with period 1, implying that M(§) and
N($) are also periodic with period one. Assuming now, and
that for the remainder of this paper, that the source term
S(§) is identically zero, Floquet’s theorem [4] states that
there exists a complete set of solutions to (38) of the form

0(£) =e™q(¢) (39)
where

q(¢)=q(s+1). (40)
The dispersion relation of the empty waveguide is the
implicit dependence of pure imaginary I'’s upon the
parameter {2. The differential equation of a Floquet solu-
tion is obtained by substituting (39) into (38)

19 = (M()-3. (4)

B. Fourier Series Solution of Floguet Equation (41)
Expand both M(£) and () in a complex Fourier series

0
M(E)= L M

Jj= 00
g&)= X g

J=—00

and substitute (42) and (43) into (41)

(42)

(43)

S 2mijlg et =

j=-»

o0 [e o]
L[ £ woa)-rm e )
Jj=—0o0 [= 00
Equating like powers of e in (44) yields
o]
> M, ,g,—(T+2mij)lg;=0 (45)
[=-

which reduces the solution of I' and 4§ in (41) to a
generahzed matrix eigenvalue problem of the form (W —
TU)X= 0, where the elements of W and U are constructed
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—A
, (36)
= (B-w()$()$(1)")

from the matrices M, and I as defined by (45). If M(§) is
real (n,, = 0), there are equivalent real forms of W and U
which would simplify and speed up the numerical compu-
tation of the eigenvalues of the system.

VI. SELECTION OF BAsIS VECTOR AND WEIGHT

FuNcTION

A critical point in setting up the systems of equations
(45) to be solved is the choice of the basis set vector (12).
The ¢,(v) should be simple in form to allow for easy
calculation of the matrices 4, B, C, and D, and yet be of a
form that relatively few (N small) are required to well
approximate the electromagnetic fields in the field expan-
sions. It is tempting to let ¢,(») = Jj(p, ,+1?), the deriva-
tive of the zero-order Bessel function where p,, , is the nth
zero of Jy(x), since such a choice for ¢,(») would allow the
state vector equations to satisfy exactly the constant diame-
ter waveguide case (a(§) = constant) for a finite N. The
problem with this choice is that &(1) =0, but if one allows
the walls of the guide to undulate G,(a(§),£)# 0. Such a
choice of basis vector does not allow the axial electric-field
expansion to converge on the waveguide boundary, and
leads to Gibbs’ oscillations near the boundaries. At the
suggestion of Dr. David Russel (U.S. Army Mathematics
Center, University of Wisconsin, Madison) the piecewise
cubic cardinal spline functions [S] were chosen for the
¢,(»). However, since not all splines are zero for » = 0, the
splines were modified in the following manner. Denoting
the cardinal splines on the unit interval subdivided into N
subintervals by B;(N; »), one has the problem that By(N;0)
and B,(N;0) are not zero. This problem is rectified by
defining

¢o(7) = By(N; V)‘4B—1(N; v)
¢,(»)=B,(N;v)~B_,(N;»)

(46)
(47)

¢,(»)=B(N;»), 1<j<N+1 (48)
where
0, v —2/N
(Nv+2)’, -2/N<p<-1/N
1+3(Nv +1)+3(Nv +1)*=3(Nv +1)°,
-1/N<r<0
1-3(Ny —1)+3(Nv —1)>=3(Nr —1)’,
0<»<l/N
~(Nv-2)’, 1/N<v<2/N
0, v>2/N
(49)
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T T
00 a1 02 03 04 05 0.6 0.7 0.8 0.9 1.0

Fig. 1. Component functions of basis vector for N = 2.

and
B(N;v)=By(N;»— j/N). (50)

For N = 2, the basis functions ¢ () are plotted in Fig. 1.
The weight function w(») is now chosen

(51)
so that products of the form F(£)AG(¢&) and other simi-
lar products are equivalent to surface integrals of the
empty waveguide fields over the cross section of the wave-
guide. Such a choice of w(») will allow one to relate the
coupling impedances of driven modes to physically
meaningful quantities such as the axial power flow and the
axial electric field of the empty waveguide modes. The
derivation of the coupling impedance will be detailed in
future publications.

VIL

To check the choice of basis functions, consider (45) for
a(§) =1 (no undulation) and =10

(M, —TI)g, = 0. (52)

From the analytical theory of cylindrical wavegunides, one
knows that the I'’s satisfying (52) should be the roots, p,,,
of the zero-order Bessel function. A comparison of p,, and
the I'’s of (52) for various values of N is given in Table 1.

As is evident from Table I, N =2 offers accurate values
for both the TM;; and TM;, modes of a constant diameter
cylindrical wave guide, and suggests that a basis set vector
with four dimensions should suffice when «(£) is not
constant. To test the technique for a periodic waveguide,
the form of a(£) was assumed to be

a(§)=a,(1+ 8cos(27¢)). (53)

The system matrix (36) was expanded into a Fourier
series using an FFT program and the M, _, in (45) evaluated
for |/ —!| < Npam- Thus, it was assumed that M(&) and
4(£) could be represented adequately with a Fourier series
containing Ny, harmonics. The eigenvalue problem
presented by the truncated form of (45) was solved with
the EISPACK subroutine library [6]. The system solved to
test the method set a, =1 and & = 0.1. First the system was

w(r)=7»

TESTING OF BASIS VECTOR SETS

D_NL/\/
o =
™ 02
el
c
=
o
TM,,
6«
°
° T — T T T T T T T T L T T
0.0 05 10 15 20 25 30 3.5 40 4.5 5.0 5.5 6.0 65
Im(T)
Fig. 2. Dispersion curves for slow-wave structure with ay=1 and
6=01
TABLE 1

COMPARISON OF THE ROOTS ( pg,) OF Jo(x) WITH EIGENVALUES T’
OF (M, — T'T) FOR DIFFERENT VALUES OF N

2.4048 5.5200 8.6537 11.791 14.930 18.071

Poy

2 2.4049 5.9375 8.8905 17.4M - -

3 2.4048 5.5227 8.7441 12.438 23.324 -
4 2.4048 5.5205 8.6780 11.99 16.128 29.658
5 2.4048 5.5305 8.6586 11.875 15,235 19,957
li 2.4048 5.5201 8.6550 11.814 15,112 184462

TABLEII
TM; CUTOFF FREQUENCY AS A FUNCTION OF SYSTEM
EXPANSION PARAMETERS

Nharm

1 2 3

2 3.584 % 0.1% 3.577 & 0.07% 3.574 ¢ 0.06%

3.581 ¢ 0.06% 3.576 t 0.03% 3.576 & 0.03%

4 3.581 t 0.06% 3.573 & 0.03% 3.576 4 0.03%

expanded with N=2 and N, =1, and the resulting
dispersion curve was plotted in Fig. 2. This plot shows the
typical passband stopband behavior of a periodic wave-
guide system. In order to determine the accuracy of the
expansion used, the upper cutoff frequency of the lower
branch of the TM;; mode (Im(I') = #) was calculated as a
function of N and N,,,,. The results are shown in Table
IL. The value for N =2, N, =1 is within +0.11 percent
of the value for N =4, N, =3 indicating that, at least
for the lower branch of the TM; mode, the expansion
with N=2, Ny, =1 is accurate enough for all practical
applications. If § is increased, the test described should be
performed again to see if Ny, . =1 is sufficient. Likewise,
the convergence of higher order mode cutoff frequencies
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. should be checked before complete dispersion curves are
- computed.

VIII.

In the foregoing sections, a technique had been devel-
oped to convert the Maxwell equations with boundary
conditions to a system of ordinary coupled linear differen-
tial equations. The technique is equivalent to that used by
S. A. Schelkunoff [7], except that the notation used clarifies
the derivations and the basis vector has been chosen so
that field convergence is obtained on the waveguide
boundary, as well as in the waveguide interior. When

RESULTS AND CONCLUSIONS

applied to a periodic waveguide, the technique allows one

to calculate dispersion curves accurately with relatively
low-order expansion parameters (N and N,,..) and is not
limited to fundamental waveguide modes. The technique is
also well suited for calculating the coupling impedances
required in the normal mode expansion of a driven wave-
guide (to be described in a future paper).
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