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Calculation of TMO~ Dispersion Relations in
a Corrugated Cylindrical Waveguide

ALAN BROMBORSKY, MEMBER, IEEE, AND BRIAN RUTH

Abstract—The TMOn -mode Maxwell equations in a cylindrical geome-

try are converted to a state-vector system of coupled linear differentkd
equations, in which the boundary conditions for a waveguide of varying

diameter are included in the coefficient matrix of the state-vector system.
The particular problem of periodic boundary conditions is solved for a

waveguide with a sinusoidafly undulating wafl.

I. INTRODUCTION

T HE GENERATION of ultra-high-power ( -1 GW)

microwave pulses, via the driving of slow-wave struc-

tures by intense, pulsed, relativistic electron beams (0.5 to

2.0 MeV, 2 to 15 kA, 15 to 100 ns) [1], [2], places unique

demands upon the slow-wave structure in terms of the RF

power densities (0.3 GW/cm2) and electric fields (400

kV/cm) present in the structure. Conventional slow-wave

structures, such as the helix- and iris-loaded waveguides,

are susceptible to high-field breakdown, and hence plasma

formation, with the subsequent shorting out of the slow-

wave structure. What is required for ultra-high-power de-

vices is a structure with a periodic wall shape that does not

lead to undue electric-field intensification. A possible

candidate is a cylindrical guide in which the waveguide

diameter varies sinusoidally with axial position.

However, in order to design a device utilizing such a

structure, the cold waveguide dispersion relation and the
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electromagnetic field distribution must be accurately de-

termined.

The basic objective of this paper is to describe a tech-

nique for computing the dispersion relation and electro-
magnetic fields of the TMOn modes of a periodically rip-

pled cylindrical waveguide. Please note that the technique

to be described also can be applied to other than TMO~

modes, so that with minor changes the derivation could be

quite useful in calculating TE modes in tapered gyrotron

cavities. Also note that the source terms in the Maxwell

equations are not initially set to zero. This is done so that

eventually the field calculation described can be used to

compute the coupling impedance between an electron beam

and a propagating waveguide mode.

II. SCALING OF MAXWELL EQUATIONS

A. Notation

We define (in MKS units)

c free-space speed of light,

co permittivity of free space,

PO permeability of free space,

no free-space wave impedance (377 0),
u wave circular frequency,
r, 6, z cylindrical coordinates,

E,, Ee, Ez electric-field components,

H,, %, E. magnetic-field components,

Jr, Jo>-(z current-density components,

L periodicit y length of slow-wave structure,
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scaling current density,

conductivity of waveguide wall,

radius of slow-wave structure as a function

of axial position,

square root of minus one,

differentiation operator,

transpose operator,

conjugation operator,

hermitian conjugation operator.

B. Transformation of Equations

The oscillatory Maxwell equations, with an assumed

time dependence of ez”t, for the azirnuthally symmetric

TM modes ( EO, H,, HZ, and JO all zero) are

(la)

~$(rHO) =icoeOEZ + JZ (lb)

aEr aEz
— = – itipOHe.

82 dr
(lC)

For computational purposes, and in order to understand

how the dispersion relations scale with system dimensions,

the Maxwell equations should be rewritten in terms of

dimensionless variables. Introducing the variables

Q = uL/c (2a)

.$= z/L (2b)

K = r/L (2C)

S,= J,/JO (2d)

SZ= J,/JO (2e)

F@= HO/(LJO) (2f)

G,= Z$lE,/(qOLJO) (2g)

GZ= iQE,\(qOLJO) (2h)

and substituting them into the first equation set (1) trans-

forms the Maxwell equations into

aF~
—=-(GF+S,)
a.f

(3a)

~~(pFO)=Gz+Sz (3b)

aGr aG,
— = Q2F0.

al – ap
(3C)

Note that, in addition to making the Maxwell equations

dimensionless, the change of variables ha; eliminated the

frequency coefficients from all equations except (3c). The
frequency coefficient !22 in (3c) is now real if fi? is real.

III. WAVEGUIDE BOUNDARY CONDITIONS

If the waveguide is a perfect conductor, the boundary

condition to be enforced is zero tangential electric field on

the boundary, Ej(R(z), z)= O. If the waveguide wall is not

a perfect conductor, the tangential electric field is related
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to the azimuthal magnetic field by

E,(N(z),z) = –ZWHO(R(Z), Z) (4)

where the surface impedance of the waveguide wall ZW is

[3]

(5)

In order to express (4) in terms of the same dimensionless

variables as the system (3), define a dimensionless wave-

guide radius by

a(&) =R(L~)/L (6)

and substitute (2f), (2g), and (2h) into (4) to obtain

Defining

qW(a)=–i(l+i)$13/2/~m

and expressing Gt(a(fJ, t) in terms of, its

produces a boundary equation of the form

(G,(a(g),f)+~x’(4)G,(~($ ),&))/(l+a’(~)i

(7)

(8)

components

= qw(Q)F@(~(t)9t) (9)

which allows one to express GZ on the wall in terms of G,
and Fe

r
Gz((x($), &) =11+ a’(f)2qw($_l)Fo( a(t), t)

– (x’($) G,((x($), $). (10)

In addition to the boundary conditions at the waveguide

wall, the cyliridrical symmetry of the system requires that,
on the waveguide axis (p = O), Fe, G,, and S, be zero for

all &

IV. TRANSFORMATION OF MAXWELL EQUATIONS TO

STATE VECTOR EQUATIIYNS

A. Notation

Denote a gen:eral state vector ~(f) by

fi(f)= [J%($), ” “ “>VN+1(4)1T (11)

and define a basis set vector by

;(V) =[$O(V),..., +N+,(V)]T (12)

where the @j(v) form a complete set of at least once-dif-

ferentiable basis functions on the interinl (O,1) as N ~ co,

and let ;(O) ❑= 6. For the variable-diameter cylindrical

waveguide, let

v(p, g)=~/a(g) (13)

so that the waveguide radius for any given ~ is equivalent

to V=l.

B. Field Expansions

Except for G, (p, c), which would be redundant, expand

all field and source components in terms of the basis set
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vector and a state vector

q(p, t)=7(v(P, t)) T~(c) (14)

G,(p, $)= T(v(p, &))%($) (15)

sr(p,:) =i(P(p, g)) TF(&) (16)

sJp, t)=; (v(p, f)) TF(&’v(v,t). (17)

Because ~(0) =6, the boundary conditionson Fo, G,, and

S, are satisfied at p=O, However, so that SZ can take on

nonzero values at p=O, the expansion for S, (17) is

modified by the factor 1/v. Then, if ~(v) is restricted to go

to zero linearly as v approaches O, SZ(O, &) can take on

finite nonzero values. The field expansion for G,(p, $) is

obtained by substituting (14) and (17) into (3b)

G,(p, $) = (~(v)+~(v)/v)~~($)\a($)

- ~(v)~#z($)/v. (18)

C, State Vector Form of Curl H Equation (3a)

Substituting (14), (15), and (16) into (3a) yields’
-)

+d(v)~i+ d(v)~+= –i(v)~(d+ ~). (19)

Simplifying dv/d~ by noting

av a’(f) p lx’
8(=–——=–—a(f) fx(c) ~ v (20)

and substituting (20) into (19), we obtain

;(v)~$= :vl(v)’~- i(v) ’(d+~). (21)

Multiply (21) from the left by w(v);(v) where W(V) is an

arbitrary weight function. Then integrate the resulting

equation from O to 1 with respect to v, giving

(22)

where A and B are dyadic matrices defined by

/
A= ~ldvw(v)~(v)~(v)~ (23)

ll=~%v(v)v;(p)i(v)~. (24)

D. Slate rector Form of Curl E Equation (3c)

Substitute (14) and (15) into (3c)

“ dGz
;(v)’%= ~p‘+: V~(V)Td+~2; (V)T~. (25)

Multiply (25) from the left by w(v);(v) and integrate from

O to 1 with respect to v, giving

A$=J%(V)7(V)$+

Now reduce the first term of the right-hand side (r.h.s.) of

(26) via integration by parts

j’dvw(v)d(v)~= -& J%w(v)?(v)g
o

‘:{[~(~);(v)Gz] ;-~ldv(~(v);(v))’G,}.

(27)

Evaluate the first term in the r.h.s. of (27) by using the

boundary condition (10) for which the expansions (14) and

(15) for F~(a(O, g) and G,(a(.$), g) have been substituted
into it

:[w(v)?(v)G,]:

ll+(~’)z——
a

qw(fl)w(l);(l); (l) TF(g)

– :W(l)?(l)d(l) ’d(t). (28)

Evaluate the second term in the r,h.s. of (27) by substitut-

ing (18)

:J1d~(~(~)i(~))’Gz =j(c+~)~(~)- *~@(&)

(29)

where C and D are the dyadic matrices

C= J%(W(V)?(V))’Z(V)T (30)

/
D= oldv(w(v)~(v))’~ (v)T/v. (31)

Now substitute (28) and (29) into (26) via (27) to obtain

the Curl E state vector equation

A~=~(B-w(l)~(l) ~(l)T)e

+ l/l+a’(&)2

{ a(g) %(Q)w)im);(l)T

(32)

E. Total State Vector Equations

Define

o(f)’= (F($) T! G(t)T) (33)

F($)’= (F($)T, R(C)T) (34)

11
~=Ao

OA
(35)
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I :B –A

M(c) =

F i

(36)

~w(~)w(l)i(l)i( l) T+02A– “:2D) $( B- W(l);(l);(l)=)

~($) = [ ‘OA&
1

(37)

so that the state vector equation can be written

i%= ~($)Q + N(t)i. (38)

V. SOLUTION OF STATE V12CTOR EQUATIONS FOR

PERIODIC BOUNDARY CONDITION

A. Floquet Solution

If R(z) is periodic with period L then a(~) is periodic

with period 1 and likewise a’/a, ~1 + (a’)2/a, and l/a2

are also periodic with period 1, implying that M($) and

N($) are also periodic with period one. Assuming now, and

t~at for the remainder of this paper, that the source term

S($) is identically zero, Floquet’s theorem [4] states that

there exists a complete set of solutions to (38) of the form

0(.$’) = e’fl(~) (39)

where

7( ’$)= ?($+1). (40)

The dispersion relation of the empty waveguide is the

implicit dependence of pure imaginary T‘s upon the

parameter Q. The differential equation of a Floquet solu-

tion is obtained by substituting (39) into (38)

~~=(M(t)–r~)~. (41)

B. Fourier Series Solution of Floquet Equation (41)

Expand both M(t) and ~(f) in a complex Fourier series

M($) = ~ M1e2”iJf (42)
j=–*

~($) = ~ ~,e’”’1$ (43)
,=–~

and substitute (42) and (43) into (41)

J.–m

co wZ{(Z )}M, -l;, – rI]J e2miJt. (44)
,=–~ [=–w

Equating like powers of e 2ni& in (44) yields

~ Mj.,gl-(r+2~ij) Iqj= 8 (45)
1=–CC

which reduces the solution of r and ij’ in (41) to a

generaliz~d matrix eigenvalue problem of the form (W –

lYl) Z = O, where the elements of Wand U are constructed

from the matrices lf~ and 1 as defined by (45). If M($) is

real (qW = O), there are equivalent real forms of W and U
which would simlplify and speed up the numerical compu-

tation of the eigenvalues of the system.

VI. SELEcrIoN OF BASIS VECTOR AND WEIGHT

FUNCTION

A critical poin~t in setting up the systems of equations

(45) to be solved k the choice of the bask set vectpr (12).

The $(v) should be simple in form to allow for easy

calculation of the matrices A, B, C, and D, and yet be of a

form that relatively few (N small) are required to well

approximate the electromagnetic fields in the field expan-

sions. It is tempting to let ~,(v) = J(( pO,J+ Iv), the deriva-

tive of the zero-order Bessel function where PO,. is the n th

zero of JO(x), since such a choice for O](v) would allow the

state vector equations to satisfy exactly the constant diame-

ter waveguide case (a(.$) = cons~ant) f~r a finite N. The

problem with this choice is that o(1)= O, but if one allows

the walls of the guide to undulate G,(a(.$), $) + O. Such a

choice of basis vector does not allow the axial electric-field

expansion to converge on the waveguide boundary, and

leads to Gibbs’ oscillations near the boundaries. At the

suggestion of Dr. David Russel (U.S. Army Mathematics

Center, University of Wisconsin, Madison) the piecewise

cubic cardinal spline functions [5] were chosen for the

+,(v). However, since not all splines are zero for v = O, the

splines were modified in the following manner. Denoting

the cardinal splines on the unit interval subdivided into N

subintervals by IL(N; v), one has the problem that BO(N; O)

and 111(~, O) are not zero. This problem is rectified by

defining

+o(~;l=Bo(~;v)-4B-~(N;v) (46)

%(V:)= BI(N;Y)-B-l(N;V) (47)

OJ(V:)=B, (N; V), l<j<N+l (48)

where

I
o, V < – 2/N

(Nv+2)3, –2/N<p<–l/N

1+3( NV+1)+3(NV +1)2–3(NV+1)3,

BO(N; V)=

{

–1/N<v<O

1–3(NV–1)+3(NV –1)2–3(NV–1)3,

I
OGv G1/N

I-(Nv-2)3, l/N G V< 2/N

o, V> 2/N

(49)
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Component functions of basis vector for N = 2.

B’(N; v)=130(N; v-j/N). (50)

For N= 2, the basis functions $JJ(v) are plotted in Fig. 1.

The weight function w(v) is now chosen

W(v)=v (51)

so that products of the form ~t(c)xl ~(t) and other simi-

lar products are equivalent to surface integrals of the

empty waveguide fields over the cross section of the wave-

guide. Such a choice of W(V) will allow one to relate the

coupling impedances of driven modes to physically

meaningful quantities such as the axial power flow and the

axial electric field of the empty waveguide modes. The

derivation of the coupling impedance will be detailed in

future publications.

VII. TESTING OF BASIS VECTOR SETS

To check the choice of basis functions, consider (45) for

rx(c) = 1 (no undulation) and O = O

(MO- r~)~O=6. (52)

From the analytical theory of cylindrical waveguides, one

knows that the r‘s satisfying (52) should be the roots, PO],

of the zero-order Bessel function. A comparison of PO, and

the r‘s of (52) for various values of P/ is given in Table I.

As is evident from Table 1, ~ = 2 offers accurate values

for both the TMOI and TM02 modes of a constant diameter

cylindrical wave guide, and suggests that a basis set vector

with four dimensions should suffice when a(t) is not

constant. To test the technique for a periodic waveguide,

the form of a($) was assumed to be

a(g) = ao(l+ 13cos(27rg)). (53)

The system matrix (36) was expanded into a Fourier

series using an FFT program and the MJ _ ~ in (45) evaluated

for Ij – 11< Nh=. Thus, it was assumed that if(t) and

I(t) could be represented adequately with a Fourier series

containing ~ham harmonics. The eigenvalue problem

presented by the truncated form of (45) was solved with

the EISPACK subroutine library [6]. The system solved to

test the method set CYo= 1 and ~ = 0.1. First the system was

o
h-

0 TMO,
m-

c
c1
m-

TMO1

6
N-

0

0
0 ~J

0.0 05 10 15 20 25 30 3,5 40 4.5 5,0 5,5 6,0 65

Ire(r)

Fig. 2. Dispersion curves for slow-wave structure with a.= 1 and
8 = 0.1.

TABLE I
COMPARISON OF THE ROOTS (po,) OF Jo(x ) WITH EIGENVALUES r

OF ( kfO – rl) FOR DIFFERENT VALUES OF N

Po, 2.4048 5.5200 8.6537 11.791 14.930 ~S.071

N

I

2 2.4049 5.5375 8.8905 17.471

3 2.4048 5.5227 8.7441 12.470 23.324

1’ 2.4048 5.5205 8.6780 11.991 16.128 29.658

I

5 2.4048 5.5305 8.6586 11.875 15.235 19.957

6 2.4048 5.5201 8.6550 11.814 15.112 18.462

TABLE II
TMO1 CUTOFFFREQUENCYASA FUNCTION OF SYSTEM

EXPANSIONPARAMETERS
—

‘ham

1 2 3

12 3.584 + 0.1% 3.517 * 0.07% 3.574 i 0.06%

I

N 3 3.581 * 0.06% 3.576 * 0.03% 3.576 + 0.03%

I
14 3.591 * 0.06% 3.573 * 0.03% 3.576 + 0.03% I

expanded with N = 2 and Nh= = 1, and the resulting

dispersion curve was plotted in Fig. 2. This plot shows the
typical passband stopband behavior of a periodic wave-

guide system. In order to determine the accuracy of the

expansion used, the upper cutoff frequency of the lower

branch of the TMOI mode (Im(17) = w) was calculated as a

function of N and N~a~. The results are shown in Table

II. The value for, N = 2, N~m = 1 is within +0.11 percent

of the value for N = 4, Nh- = 3 indicating that, at least

for the lower branch of the TMOI mode, the expansion

with N = 2, Nha~ = 1 is accurate enough for all practical

applications. If 8 is increased, the test described should be

performed again to see if Nh= = 1 is sufficient. Likewise,

the convergence of higher order mode cutoff frequencies
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should be checked before complete dispersion curves are

computed.

VIII. RESULTS AND CONCLUSIONS

In the foregoing sections, a technique had been devel-

oped to convert the Maxwell equations with boundary

conditions to a system of ordinary coupled linear differen-

tial equations. The technique is equivalent to that used by

S. A. Schelkunoff [7], except that the notation used clarifies

the derivations and the basis vector has been chosen so

that field convergence is obtained on the waveguide

boundary, as well as in the waveguide interior. When

applied to a periodic waveguide, the technique allows one

to calculate dispersion curves accurately with relatively

low-order expansion parameters (N and IVh-) and is not

limited to fundamental waveguide modes. The technique is

also well suited for calculating the coupling impedances

required in the normal mode expansion of a driven wave-

guide (to be described in a future paper).
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